Guidelines for Developing an OpenAI for a Health Advisory System
August 22, 2024
Guidelines for Developing an OpenAI for a Health Advisory System
In the era of digital health, leveraging artificial intelligence to provide personalized health advice has become increasingly important. Today I want to guild you build an application that designed to provide personalized fitness coaching and activity tracking. The system leverages artificial intelligence, specifically OpenAI's GPT models, to offer tailored advice, generate challenges, and interact with users in a natural, conversational manner.





Architecture Overview

The system will be build on a serverless microservices architecture, primarily utilizing AWS services. This architecture allows for high scalability, cost-effectiveness, and ease of maintenance. The system consists of several interconnected components that work together to deliver a seamless user experience.

Key Techonologies
  • AWS Lambda: Serverless compute service for running code without provisioning servers
  • AWS DynamoDB: NoSQL database for storing user data, activities, and system information
  • AWS API Gateway: Fully managed service for creating, publishing, and securing APIs
  • Serverless Framework: Tool for building and operating serverless applications
  • Node.js with TypeScript: Runtime and language for implementing backend logic
  • Python: Used for some components, particularly those involving machine learning
  • OpenAI GPT models: Advanced language models for generating human-like text responses
  • Pinecone: Vector database for efficient similarity search and machine learning operations
  • FastAPI: Modern, fast web framework for building APIs with Python
  • Core Components and Their Interactions
    Virtual Coach

    The virtual coach is the heart of the AllBlazing system, powered by OpenAI's GPT models. It provides personalized advice, generates fitness challenges, and engages in natural language conversations with users.

    python
    class VirtualCoach:
    def __init__(self, history=""):
    self.OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
    self.base_data = base_dataset.dataset["qa"]["qa_dataset"]
    self.persona = base_dataset.dataset["persona"]["tutorial_coach_regular_persona"]
    self.features = base_dataset.dataset["tutorial_features"]
    # ... (other initialization code)
    def call_gpt(self, custom_prompt):
    # ... (code to call OpenAI API)
    def create_custom_prompt(self, question):
    # ... (code to create prompts for the GPT model)

    This component interacts with the OpenAI API to generate responses based on user input and context.

    User Management

    The system maintains detailed user profiles, including fitness data, goals, and progress. This information is crucial for providing personalized coaching and tracking improvements over time.

  • Data Storage:
  • User data is primarily stored in AWS DynamoDB, a NoSQL database that allows for flexible schema and fast retrieval

  • Third-party Integrations:
  • Apple HealthKit: For iOS users, AllBlazing integrates with Apple HealthKit to gather additional health and fitness data.
  • Google Fit: For Android users, the app integrates with Google Fit for similar purposes.
  • Strava: Users can connect their Strava accounts to import running and cycling activities.
  • Activity Tracking

    The application meticulously tracks user activities and health metrics, storing this data in DynamoDB for analysis and progress tracking.

  • Data Collection:
  • Mobile Sensors: The app uses the device's GPS, accelerometer, and other sensors to track activities in real-time.
  • Manual Input: Users can manually log activities that weren't automatically tracked.
  • Third-party Devices: the application integrates with popular fitness devices like Fitbit and Garmin to import activity data.
  • typescript
    const trackActivity = async (userId: string, activityData: ActivityData) => {
    const enrichedData = await enrichActivityData(activityData);
    await saveActivityToDatabase(userId, enrichedData);
    await updateUserStats(userId, enrichedData);
    };
  • Data Processing:
  • Raw activity data is processed to calculate metrics like pace, calories burned, and training effect.
  • Machine learning models are used to detect activity types and intensity levels.
  • typescript
    const enrichActivityData = async (activityData: ActivityData) => {
    const activityType = await detectActivityType(activityData);
    const caloriesBurned = calculateCaloriesBurned(activityData, activityType);
    const trainingEffect = calculateTrainingEffect(activityData, activityType);
    return { ...activityData, activityType, caloriesBurned, trainingEffect };
    };
  • Mobile Interaction:
  • Activities are synced to the backend in real-time or when the device has a stable internet connection.
  • The app provides a summary of the activity immediately after completion, with more detailed analysis available later.
  • typescript
    const syncActivities = async (userId: string, activities: ActivityData[]) => {
    for (const activity of activities) {
    await trackActivity(userId, activity);
    }
    await notifyUserOfSync(userId);
    };
  • Data Usage in the System
  • Virtual Coach Input: Activity data is used by the AI coach to provide personalized advice and generate challenges.
  • typescript
    const generateCoachAdvice = async (userId: string) => {
    const recentActivities = await getRecentActivities(userId);
    const userProfile = await getUserProfile(userId);
    const advice = await callGPTForAdvice(recentActivities, userProfile);
    return advice;
    };
  • Progress Tracking: The system analyzes activity data over time to track user progress towards their fitness goals.
  • typescript
    const updateUserProgress = async (userId: string) => {
    const activities = await getUserActivities(userId, { last: '30 days' });
    const progress = calculateProgress(activities);
    await updateUserProgressInDB(userId, progress);
    };
  • Leaderboards and Social Features: Aggregated activity data is used to create leaderboards and enable social sharing features.
  • typescript
    const updateLeaderboards = async () => {
    const topRunners = await getTopRunners({ last: '7 days' });
    await updateLeaderboardInDB('weekly_runners', topRunners);
    };
  • Health Insights: The system generates health insights by analyzing patterns in the user's activity data.
  • typescript
    const generateHealthInsights = async (userId: string) => {
    const healthMetrics = await getHealthMetrics(userId, { last: '90 days' });
    const insights = await analyzeHealthTrends(healthMetrics);
    await saveInsightsToDatabase(userId, insights);
    };
    System Interaction Flow
  • A user interacts with the mobile app, built with React Native.
  • The app sends requests to the AWS API Gateway.
  • API Gateway triggers the appropriate AWS Lambda functions based on the request.
  • Lambda functions process the request, interacting with DynamoDB for data storage and retrieval.
  • For AI-powered features, Lambda functions communicate with OpenAI GPT models.
  • Some advanced features utilize Pinecone for vector search capabilities, enabling more sophisticated data analysis.
  • The processed results are sent back through API Gateway to the mobile app.
  • The app updates its UI to display the results to the user
  • A visual depiction of what is being written about
    Deployment and Development

    The application system utilizes the Serverless Framework for efficient deployment and management of AWS resources. This approach simplifies the process of updating and scaling the application as needed.

    typescript
    import changeActivityStatus from "@functions/change-activity-status";
    import chatWithGPT from "@functions/chat-with-gpt";
    import coachResponse from "@functions/coach-response";
    // ... (other function imports)
    // Serverless configuration file

    The development environment is set up with npm for package management, including scripts for local development and deployment to different environments:

    typescript
    "scripts": {
    "test": "echo \"Error: no test specified\" && exit 1",
    "debug": "sls offline start --httpPort 4000 --lambdaPort 4002 --websocketPort 4003 --aws-profile default",
    "deploy": "sls deploy --stage dev --region eu-west-1 --aws-profile default",
    "deploy-prod": "sls deploy --stage prod --region eu-central-1 --aws-profile default"
    },

    Discussion (0)

    Loading...

    Recommended articles

    More articles ➜
    The Purpose of Life: A Unique Perspective

    The Purpose of Life: A Unique Perspective

    The purpose of life is to live fully and explore every aspect of existence. The search for a higher, god-given purpose often leads to harm and neglect of life itself. The need for purpose stems from our psychological structure, not the process of life. Achieving balance allows us to dismantle the walls of our psychological maze and experience freedom. This exploration and understanding of all dimensions of life is the true purpose of life.

    Side hustle
    Beiryu

    Beiryu

    Contributor

    0
    Exploring Communication Patterns in Microservices: A Closer Look at REST APIs

    Exploring Communication Patterns in Microservices: A Closer Look at REST APIs

    Microservices have become a popular architectural style for building large-scale and complex applications. One of the key aspects of microservices is how they communicate with each other. In this blog post, we'll explore different communication patterns used in microservices and take a closer look at REST APIs, which are widely used for inter-service communication. We'll also discuss the advantages and disadvantages of using REST APIs based on my experience in a current project.

    Architecture
    Backend
    Beiryu

    Beiryu

    Contributor

    0
    Subscribe to the newsletter
    Get emails from me about web development, tech, and early access to new articles.