Guidelines for Developing an OpenAI for a Health Advisory System
August 22, 2024
Guidelines for Developing an OpenAI for a Health Advisory System
In the era of digital health, leveraging artificial intelligence to provide personalized health advice has become increasingly important. Today I want to guild you build an application that designed to provide personalized fitness coaching and activity tracking. The system leverages artificial intelligence, specifically OpenAI's GPT models, to offer tailored advice, generate challenges, and interact with users in a natural, conversational manner.





Architecture Overview

The system will be build on a serverless microservices architecture, primarily utilizing AWS services. This architecture allows for high scalability, cost-effectiveness, and ease of maintenance. The system consists of several interconnected components that work together to deliver a seamless user experience.

Key Techonologies
  • AWS Lambda: Serverless compute service for running code without provisioning servers
  • AWS DynamoDB: NoSQL database for storing user data, activities, and system information
  • AWS API Gateway: Fully managed service for creating, publishing, and securing APIs
  • Serverless Framework: Tool for building and operating serverless applications
  • Node.js with TypeScript: Runtime and language for implementing backend logic
  • Python: Used for some components, particularly those involving machine learning
  • OpenAI GPT models: Advanced language models for generating human-like text responses
  • Pinecone: Vector database for efficient similarity search and machine learning operations
  • FastAPI: Modern, fast web framework for building APIs with Python
  • Core Components and Their Interactions
    Virtual Coach

    The virtual coach is the heart of the AllBlazing system, powered by OpenAI's GPT models. It provides personalized advice, generates fitness challenges, and engages in natural language conversations with users.

    python
    class VirtualCoach:
    def __init__(self, history=""):
    self.OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
    self.base_data = base_dataset.dataset["qa"]["qa_dataset"]
    self.persona = base_dataset.dataset["persona"]["tutorial_coach_regular_persona"]
    self.features = base_dataset.dataset["tutorial_features"]
    # ... (other initialization code)
    def call_gpt(self, custom_prompt):
    # ... (code to call OpenAI API)
    def create_custom_prompt(self, question):
    # ... (code to create prompts for the GPT model)

    This component interacts with the OpenAI API to generate responses based on user input and context.

    User Management

    The system maintains detailed user profiles, including fitness data, goals, and progress. This information is crucial for providing personalized coaching and tracking improvements over time.

  • Data Storage:
  • User data is primarily stored in AWS DynamoDB, a NoSQL database that allows for flexible schema and fast retrieval

  • Third-party Integrations:
  • Apple HealthKit: For iOS users, AllBlazing integrates with Apple HealthKit to gather additional health and fitness data.
  • Google Fit: For Android users, the app integrates with Google Fit for similar purposes.
  • Strava: Users can connect their Strava accounts to import running and cycling activities.
  • Activity Tracking

    The application meticulously tracks user activities and health metrics, storing this data in DynamoDB for analysis and progress tracking.

  • Data Collection:
  • Mobile Sensors: The app uses the device's GPS, accelerometer, and other sensors to track activities in real-time.
  • Manual Input: Users can manually log activities that weren't automatically tracked.
  • Third-party Devices: the application integrates with popular fitness devices like Fitbit and Garmin to import activity data.
  • typescript
    const trackActivity = async (userId: string, activityData: ActivityData) => {
    const enrichedData = await enrichActivityData(activityData);
    await saveActivityToDatabase(userId, enrichedData);
    await updateUserStats(userId, enrichedData);
    };
  • Data Processing:
  • Raw activity data is processed to calculate metrics like pace, calories burned, and training effect.
  • Machine learning models are used to detect activity types and intensity levels.
  • typescript
    const enrichActivityData = async (activityData: ActivityData) => {
    const activityType = await detectActivityType(activityData);
    const caloriesBurned = calculateCaloriesBurned(activityData, activityType);
    const trainingEffect = calculateTrainingEffect(activityData, activityType);
    return { ...activityData, activityType, caloriesBurned, trainingEffect };
    };
  • Mobile Interaction:
  • Activities are synced to the backend in real-time or when the device has a stable internet connection.
  • The app provides a summary of the activity immediately after completion, with more detailed analysis available later.
  • typescript
    const syncActivities = async (userId: string, activities: ActivityData[]) => {
    for (const activity of activities) {
    await trackActivity(userId, activity);
    }
    await notifyUserOfSync(userId);
    };
  • Data Usage in the System
  • Virtual Coach Input: Activity data is used by the AI coach to provide personalized advice and generate challenges.
  • typescript
    const generateCoachAdvice = async (userId: string) => {
    const recentActivities = await getRecentActivities(userId);
    const userProfile = await getUserProfile(userId);
    const advice = await callGPTForAdvice(recentActivities, userProfile);
    return advice;
    };
  • Progress Tracking: The system analyzes activity data over time to track user progress towards their fitness goals.
  • typescript
    const updateUserProgress = async (userId: string) => {
    const activities = await getUserActivities(userId, { last: '30 days' });
    const progress = calculateProgress(activities);
    await updateUserProgressInDB(userId, progress);
    };
  • Leaderboards and Social Features: Aggregated activity data is used to create leaderboards and enable social sharing features.
  • typescript
    const updateLeaderboards = async () => {
    const topRunners = await getTopRunners({ last: '7 days' });
    await updateLeaderboardInDB('weekly_runners', topRunners);
    };
  • Health Insights: The system generates health insights by analyzing patterns in the user's activity data.
  • typescript
    const generateHealthInsights = async (userId: string) => {
    const healthMetrics = await getHealthMetrics(userId, { last: '90 days' });
    const insights = await analyzeHealthTrends(healthMetrics);
    await saveInsightsToDatabase(userId, insights);
    };
    System Interaction Flow
  • A user interacts with the mobile app, built with React Native.
  • The app sends requests to the AWS API Gateway.
  • API Gateway triggers the appropriate AWS Lambda functions based on the request.
  • Lambda functions process the request, interacting with DynamoDB for data storage and retrieval.
  • For AI-powered features, Lambda functions communicate with OpenAI GPT models.
  • Some advanced features utilize Pinecone for vector search capabilities, enabling more sophisticated data analysis.
  • The processed results are sent back through API Gateway to the mobile app.
  • The app updates its UI to display the results to the user
  • A visual depiction of what is being written about
    Deployment and Development

    The application system utilizes the Serverless Framework for efficient deployment and management of AWS resources. This approach simplifies the process of updating and scaling the application as needed.

    typescript
    import changeActivityStatus from "@functions/change-activity-status";
    import chatWithGPT from "@functions/chat-with-gpt";
    import coachResponse from "@functions/coach-response";
    // ... (other function imports)
    // Serverless configuration file

    The development environment is set up with npm for package management, including scripts for local development and deployment to different environments:

    typescript
    "scripts": {
    "test": "echo \"Error: no test specified\" && exit 1",
    "debug": "sls offline start --httpPort 4000 --lambdaPort 4002 --websocketPort 4003 --aws-profile default",
    "deploy": "sls deploy --stage dev --region eu-west-1 --aws-profile default",
    "deploy-prod": "sls deploy --stage prod --region eu-central-1 --aws-profile default"
    },

    Discussion (0)

    Loading...

    Recommended articles

    More articles ➜
    How to Set Up Real Time Performance Monitoring with Netdata

    How to Set Up Real Time Performance Monitoring with Netdata

    Netdata provides real-time performance monitoring for Linux systems, visualizing processes and services through web dashboards. The tutorial outlines how to install and configure Netdata, including installing dependencies, cloning the Netdata repository, building and installing the application, and configuring memory usage. It also covers enabling Kernel Same-page Merging to optimize performance, and hosting the Netdata dashboard through Nginx for secure access. The tutorial concludes with a brief exploration of the Netdata dashboard.

    DevOps
    Beiryu

    Beiryu

    Contributor

    2
    Ferrero WAF, The Need to Retest All Stories

    Ferrero WAF, The Need to Retest All Stories

    In the previous part, we discussed the challenges and experiences of building the "Let's Story" feature in the Applaydu application. However, with the introduction of Ferrero WAF (Web Application Firewall), a new requirement emerged: we needed to thoroughly retest all the stories.

    Backend
    Tutorials
    DevOps
    Beiryu

    Beiryu

    Contributor

    0
    Subscribe to the newsletter
    Get emails from me about web development, tech, and early access to new articles.